
IntraWebIntraWeb

DocumentationDocumentation

This manual and all material accompanying it is 
Copyright ©, 2001-2002, Atozed Software, All Rights Reserved.

FILED
2-10-16
08:00 AM



ntraWeb 
Introduction



IntraWeb Manual

What is IntraWeb?
IntraWeb is a revolutionary new way to create web-based applications. Built upon Web
Solution Builder and earlier versions of IntraWeb, IntraWeb extends the technology of
both of these, providing an excellent tool for creating Internet, Intranet and Extranet
applications in a quick and easy to maintain manner. 

Many web-based development tools require the user to have knowledge of CGI scripting,
state tracking and complex client configurations. IntraWeb does away with all these
hassles and overheads. By simply creating the application using the component suite
within Delphi, and later registering it on the server, clients can access the application
using any browser that complies with HTML version 4. These include the latest versions
of Netscape and Internet Explorer. Both of these have been fully tested with IntraWeb and
are 100% compatible. No HTML, CGI or JavaScript coding is required; all the coding is
done using Delphi. For further flexibility, the application can also be run as a stand-alone
executable like any other Desktop application, providing debugging capabilities. 

Documentation Sources
Be sure to check the IntraWeb FAQ (available on the Atozed Software website) as well as
the information available on the website itself. A lot of documentation is contained there
that is not in the manual or the help file and to keep it accurate and current we have not
duplicated it.

This document is designed to be a manual, not a reference guide. The help file should be
consulted when a reference for properties and components is needed.

How IntraWeb Works
IntraWeb works much like a normal executable application, with the exception that the
user interface is a web browser instead of a window. After placing the application on a
web server, a user can run an instance of the application by using a URL to start a session.
The user’s information will be tracked by the instance of the application in use, thus
preventing loss of the information or mixing it up with other user information. For each
user, new session information is created and tracked automatically and transparently to
the developer. The overhead is low and the capacity of an IntraWeb application is similar
to that of other web solutions such as ISAPI, CGI, or ASP.

IntraWeb is designed to build any sort of web-based application, whether it is a simple
data entry form, a poll, or a complex application where clients have to be “logged in” for
an extended period of time. 

Page 3 of 54



IntraWeb Manual

Requirements
The only requirement is for users of IntraWeb developed applications is that the browser
be HTML 4 compatible, since extensive use of HTML 4 and JavaScript are made.
IntraWeb has been extensively tested with Netscape and Internet Explorer and is
supported with Mozilla,  Netscape 6 and higher and Internet Explorer 4.0 and higher. 

NOTE: If you want Netscape 4 support you should use IntraWeb version 4. Which we
will continue to maintain and support.

HTML 4
IntraWeb uses HTML 4 and style sheets to achieve the coordinate placement of items and
other features. Usage of templates or page mode can eliminate the need for style sheets.

JavaScript
JavaScript is used to allow many advanced client features. JavaScript also allows
IntraWeb to control the browser and rendered pages. JavaScript is only required for
Application Mode.

Browser Specific Features
Even with HTML and JavaScript standards in place, the browsers differ in many areas.
IntraWeb adjusts for these differences automatically. IntraWeb generates the appropriate
HTML and JavaScript code for the browser. IntraWeb even knows about certain bugs in
specific versions of each browser and works around them dynamically. In other cases,
output for each browser is optimized. See the section on Browser Implementations for
more information.

Browser Implementations
Even with HTML and JavaScript standards in place, the browsers differ in many areas.
Much of this is because browsers often make extensions before such features are adopted
as standards. Often different browsers implement similar features in incompatible ways. 

IntraWeb adjusts for these differences automatically. IntraWeb generates the appropriate
HTML and JavaScript code for the browser. IntraWeb even knows about certain bugs in
specific versions of each browser and works around them dynamically. In other cases,
output for each browser is optimized. IntraWeb performs all of this transparently to you
and without using Java, ActiveX, or any plug-ins.

Page 4 of 54



IntraWeb Manual

Internet Explorer
Internet Explorer versions 4, 5, and 6 are supported.

Netscape 4
Users wishing to support Netscape 4 should use IntraWeb 4 which supports Netscape 4
and is the Netscape 4 version. IntraWeb 4 is still supported and maintained.

Netscape 6
Netscape 6 is supported. There are some known issues with Netscape 6 which are fixed in
the recent GECKO engine used in Mozilla 1.0 RC1.

Mozilla
Mozilla RC1 is supported. Please note however that Mozilla is not officially released yet
and support may change depending on bugs in Mozilla or feature changes in new releases.

Limitations of Evaluation Edition
We have designed the limitations of the evaluation edition to be such that you can fully
evaluate your application with no time limits and no development restrictions. The only
restrictions in the evaluation edition exist to hinder deployment.

Unique Port Numbers
When using the evaluation version of IntraWeb, the port numbers that your IntraWeb
application listens will be unique upon each execution. Any port settings you may specify
will be ignored. Testing is facilitated in evaluation mode by use of the execute menu item
as it automatically adjusts its URL for the changing port.

IP Restriction
In the evaluation version, IntraWeb applications only listen on the IP 127.0.0.1. No
requests from other IP addresses will be answered.

No Services
IntraWeb applications cannot be installed or run as services in the evaluation version.
Attempts to do so will result in errors.

Page 5 of 54



IntraWeb Manual

No SSL
SSL is disabled in the evaluation version.

No Deployment License
You may not deploy any applications created with the evaluation version.

Technical Support
Up to date support information is available at http:  //www.atozedsoftware.com/  

Page 6 of 54



Installation



IntraWeb Manual

Installing IntraWeb for Windows

Install
The installation will automatically integrate IntraWeb into Delphi. Three new tabs will be
created on the component palette containing the IntraWeb components. One of them
contains the non-database components, another contains the data-aware ones, and the
third contains control components. A new tab will also be created in the Delphi
repository. All IntraWeb applications should be created using the templates contained in
the repository under the tab IntraWeb.

The installation process copies the appropriate files to the Windows\System directory and
to sub folders of all the Delphi environments selected. It also creates program group,
which can be accessed via the Start menu. The documentation is placed in this program
group.

Uninstall
Uninstalling IntraWeb is done in the same way as with other Windows applications.
Select Add/Remove Program from the Control Panel and click on IntraWeb to remove it
from the system. 

Installing License Keys
The download for registered users with license keys is the same as the evaluation edition.
If you have the evaluation edition already installed you merely need to enter your license
key using the registration utility. The registration utility can be run from its icon in the
IntraWeb program group.

Page 8 of 54



IntraWeb Manual

Installing IntraWeb for Linux

Page 9 of 54



Development



IntraWeb Manual

Rethinking the User Interface
Many people try to design their web applications exactly like normal applications. If you
try this, you will create interfaces that do not work well. Imagine making a windows
application behave like a DOS application (WordPerfect did this with their initial
Windows port). That would be an awkward interface would it not? Not only do you need
to think differently about your user interface for the web, you also need to realize that the
web has limitations and design around them.

One example of this is DBGrids. In a normal Delphi application, it might be considered
normal to display hundreds or thousands of records in a grid. Doing such on the web will
create very large HTML documents and very slow load times for the user. 

Once developers realize this fact, they often ask for “Next” and “Previous” buttons and
that the DBGrid be expanded to allow partial display. While this could be implemented, it
would need to be implemented either to consume large amounts of memory on the server,
or by constantly requiring the database which would consume less memory but would be
slow. Instead of approaching it like a normal Delphi application, rethink your interface
for the web.

Certainly not the only possibility, but a common one is the following technique. Instead
of presenting your users with thousands of records initially, present them with a blank
grid and a search field. Require your users to present some basic criteria to locate the
records that they need. Using the search criteria, you can then return dozens, or just a few
hundred rows. Not only is this good for bandwidth, but it is a good user interface, and
will minimize the load on your database.

Allowing users to enter search criteria still allows for the possibility that the results may
still number in the thousands and cause the very same problem that you were trying to
avoid. To assist with this, TIWDBGrid has a RowLimit property. It defaults to 0, which
means it is disabled. You can set it to a maximum value, and no matter how may rows the
query returns, no more than the number in RowLimit will be returned to the user.

If you think about this, you have probably seen this technique elsewhere. Many search
engines limit the number of rows that are returned. This is not only for bandwidth
reasons. In most cases, the data becomes diminishingly useful after a certain number. In
cases where this is not true, simply too much data is given to the user at one time and they
will likely filter it anyways.

Page 11 of 54



IntraWeb Manual

If you still decide that you do want a “paged grid” consisting of small sets of data with
next / previous options you can accomplish this by setting the TIWDBGrid’s StartFirst
property to false and setting the RowLimit property to the number of rows you wish to
display at a given time. Then by positioning the dataset before display, you can move next
/ previous.

Creating a New Application

Writing your first application
All IntraWeb applications should be created using the IW Application on the IntraWeb
tab in the repository. Click on File -> New and then choose the IntraWeb tab. Select
Stand Alone Application. A dialog box will appear prompting for the Directory where the
automatically created files should be placed. 

This creates a framework for a new IntraWeb stand alone application. It copies the
required files to the project directory and makes a template project file and a blank form.
Although the project can be compiled and executed at this stage, it does not do anything.
The standard debug form comes up displaying some information about IW and menu
items to debug the application. Selecting the Execute menu item will launch the browser
with a blank page. This is because main form does not contain any components or
functionality yet.

program IWProject;

uses

IWInitStandAlone,

ServerController in ‘ServerController.pas’
{IWServerController: TDataModule},

IWUnit1 in ‘IWUnit1.pas’ {formMain:
TIWFormMain};

{$R *.res}
begin

IWRun(TFormMain, TIWServerController);

end.

The code in the figure above displays the contents of the project file. It contains one
procedure call to IWRun that runs the application. 

procedure IWRun(AMainFormClass: TIWFormModuleClass;
AServerControllerClass: TIWServerControllerBaseClass);

IWRun accepts two required parameters and one optional parameter. The parameters
specify the Main Form class, the Server Controller class, and the Server Type.

Page 12 of 54



IntraWeb Manual

As mentioned previously, the new project is the basic building block for any IntraWeb
application. Like any other Delphi project, a main IntraWeb form is created and can be
used as the main form of the application. To demonstrate the power and the facility of IW
applications, below, a small example is shown.

1. Open up the default IWForm (IWUnit1.pas) that has been created.

2. Drop an IWButton, IWEdit and IWLabel on the form in no particular order.

3. Assign the following code to the IWButton.OnClick event:

procedure TIWFormModule.IWButton1Click(Sender: TObject);
begin

IWLabel1.Caption := IWEdit1.Text;
end;

Once the steps are complete, compile and run the application. To test it, press the F9 key.
The default browser should be launched and display the main form. Enter some text in the
text box and click on the button. The output is displayed in the label.

Granted what we have shown in this example is not rocket science. But, it has been
created using standard Delphi code and without any HTML. The example presented has
been chosen because of its simplicity. The purpose is to demonstrate that programming
IntraWeb applications is very much the same as developing any other Delphi application.
The same methods, properties, events, etc can be used in the same way. However,
IntraWeb is much more powerful and can be used to create fully enabled database
applications and more.

For a more detailed introduction to creating new applications and detailed tutorials,
please see the articles at http://www.atozedsoftware.com/.

Working with Forms
The repository contains another unit, which is the IntraWeb Form. All new IntraWeb
forms should be created using File | New and choosing the IntraWeb Form. All forms
used by an IntraWeb application MUST be an IntraWeb-specific form. Standard Delphi
forms are not compatible with IntraWeb. A new unit and form will be created and
displayed on the screen. Working with IntraWeb forms differs a little bit from working
with standard Delphi forms. For instance, any form that is displayed must be done using
the Show method of the form. In other words, ShowModal is not permitted or supported.
For more information regarding forms, see the tutorials or demos.

Page 13 of 54



IntraWeb Manual

Images and Graphics
IntraWeb supports graphics via the use of templates, TIWImage, TIWDBImage and
TIWImageFile. There are many ways to use graphics with in IntraWeb, but these are the
primary methods.

Templates
Use of graphics in templates is done by inserting the graphics directly into the HTML.
Graphics may be served using the Files directory, or a standard web server.

TIWImage
TIWImage is used for dynamic images. Each time an image is requested the image is
converted to a JPG. This can be rather resource intensive and thus should only be used for
images that will be changed as part of an application’s function. 

For an example of this, please see the Dynamic Interactive Image demonstration in the
Features demo.

For static images that are not generated each time, use TIWImageFile.

TIWDBImage
TIWDBImage converts images from a database field to a JPG automatically. It is used
just like a normal TDBImage, it performs all the work necessary to display the image
from the database field into the browser.

For an example of TIWDBImage, see either of the FishFact demos.

TIWImageFile
TIWImage file serves a file directly from a file on disk. Because it does no conversion of
the image, TIWImageFile is an extremely efficient way to serve images and is much more
efficient than TIWImage. If you are using images that are completely static, you should
always use TIWImageFile.

TIWImageFile provides for design time support as well by displaying the image at design
time. However the image is merely displayed, the image data is not stored with the form.
Whenever displayed at design time the image is loaded from the file on disk.

The filename specifies a full path and filename to the image file to display at design time.

Page 14 of 54



IntraWeb Manual

At run time, the path is ignored and only the filename is used. At run time, the image is
expected to be in the files directory.

GIF Support
IntraWeb can support GIF files however the install does not install GIF support. Please
see the IntraWeb FAQ for details on how to use GIF files with IntraWeb.

Miscellaneous

External Files
Files such as images and download can be accessed using relative paths located under the
main application folder. Create a folder named files and place all HTML objects
referenced inside it. In the HTML page you can reference the images using:

img src=”../files/image.jpg”

Be sure to use / and not \. Internet Explorer will correct for \, but other browsers will
show broken images. In addition, this functionality is not limited to images and can be
used for any file type.

Files accessed with the files URL are cached by the browser. If you wish to create
dynamic files that should not be cached use ../filesnc/<filename> instead of
../files/<filename>. Files will still be retrieved from the same place in the files
subdirectory, but the browser will be instructed not to cache them.

Other Form Properties
Be sure to look at the properties on the form as well. There are properties that allow
customization of the output that are often overlooked. These properties allow control over
the HTML output, and more.

Server Controller
Each application has a ServerController unit. The ServerController contains properties to
affect how the application acts and behaves on a global scale. It also contains events that
can be defined.

Page 15 of 54



IntraWeb Manual

Datamodules
If you use datamodules, please see the FishfactDM demo. One thing to note, if you link
your datasource properties to a datamodule at design time like FishFactDM does, your
datamodules MUST be owned by the users WebApplication. This is done in FishFactDM
by setting the datamodule’s owner to the session data’s owner, which is the
WebApplication variable. If this is not done, the forms will not be read in properly and all
the forms will be linked to the first and same datamodule.

Extending IntraWeb

Custom Components
All IntraWeb components are written using an open API that easily allows you to write
your own components and add them to IntraWeb just as you can with Delphi. To further
facilitate the writing of components the source code for all IntraWeb components in
included, even in the evaluation edition of IntraWeb.

For further information on creating custom components please see the section “Writing
Custom Components” in this manual.

Embedding Raw HTML
You can also embed your own HTML in your IntraWeb application without writing a
component by using the TIWText component. Simply drop a TIWText component on
your form. Set the RawText property to True, and the WantReturns to False. Finally, put
the HTML in the Lines property and your custom HTML will be output as part of your
form.

HTML Templates
HTML templates (simply referred to as templates elsewhere) can be used to add advanced
HTML into your application and customize the look of your application. Please see the
section on layout managers for more details.

Page 16 of 54



orm
Management



IntraWeb Manual

Introduction
Form management in an IntraWeb application is very similar to that of a normal Delphi
application but with a few restrictions.

Restrictions
1. Only one form may be visible at any time. This is because the form is actually shown

in the browser.

2. Modal forms may not be used, however since only one form at a time may be visible,
essentially all forms are modal.

3. Forms must be owned by WebApplication.

Usage

Form List
IntraWeb keeps a list of forms as part of the users session. It is kept in a stack like fashion
with newly shown forms being added to the top. When forms are hidden or released this
list is used to determine the form that should be activated if not explicitly instructed to
show another form via a call to the .Show method of a form.

Normally the form list is never directly interacted with by the user but instead methods of
the forms are called. However there are cases where direct interaction with the form list
may be necessary. For these cases TIWApplication contains several methods for
interacting with the form list and are documented in the help file.

Showing Forms
The general format to display a form is this:

TFormType.Create(WebApplication).Show;

This may be confusing at first, but it is just short hand for:

with TFormType.Create(WebApplication) do begin
Show;

end;

This should be familiar to you as it is the same as in a standard application except the
owner here is WebApplication. One thing that is different however is that in a normal
application the form is shown immediately when the .Show method is called. With an
IntraWeb application the call to the .Show method merely sets the form as the next active

Page 18 of 54



IntraWeb Manual

form to show after the event exits and returns to IntraWeb. Only after the event executes
will the form be shown.

A given instance of a form can be shown multiple times to bring it to the top. In this case
the instance of the form will be in the form list in multiple places.

Destroying Forms
In a normal application when a form is no longer needed it can be destroyed using the
.Free or the .Destroy methods. 

In an IntraWeb application it is similar, however you must not call the .Free or .Destroy
methods directly. Instead you must call the .Release method. The .Release method does
not actually destroy the form when called. The form will not be destroyed until the event
exits and returns control to IntraWeb. This is because .Release is usually called from
within and event of the form itself, although this is not always the case.

After release is called, just like in a normal application the active form becomes the one
that was active prior to the destroyed form became active. If you do not wish to return the
user to the prior form you must call the .Show method for a different form. The .Show
method can be called before or after .Release since neither takes effect until control is
returned back to IntraWeb.

When a form is released, all references to it in the form list are removed. This causes an
alteration in the order of the forms that will be shown when forms are hidden or released
with no explicit .Show method calls.

Hiding Forms
In a normal application a form can be hidden without destroying the form by calling the
.Hide method.

The same functionality can be implemented in IntraWeb by calling its simply calling the
.Hide method. The .Hide method will hide the form without destroying it as .Release
does.

.Hide removes all references in the form list as .Release does but does not destroy the
form. Because of this you must keep a reference to the form if you wish to redisplay it
later, otherwise the form will become orphaned.

Page 19 of 54



IntraWeb Manual

Passing Data Between Forms
Data can be passed between form just like in any normal application. Since forms are
persistent information can be stored in member variables of form classes.

For demonstration purposes we will define two forms, TFormMain and TFormDialog.
TFormMain is the main form and contains an button and an edit box. TFormDialog
contains a memo field and a label.

When the user presses the button on the first form the text from the edit box will be added
to the memo on the dialog form and the form will be displayed. The dialog form will also
display how many times it has been displayed and allow the user to return to the main
form.

Main Form – Design Time

Main Form – Source Code

unit Main;
{PUBDIST}

interface

uses
IWAppForm, IWApplication, IWTypes, IWCompButton, IWCompEdit,

Classes,
Controls, IWControl, IWCompLabel, Dialog, IWHTMLControls;

type
TformMain = class(TIWAppForm)

IWLabel1: TIWLabel;
editText: TIWEdit;
butnOk: TIWButton;
IWLink1: TIWLink;
procedure butnOkClick(Sender: TObject);
procedure IWAppFormCreate(Sender: TObject);
procedure IWLink1Click(Sender: TObject);

Page 20 of 54



IntraWeb Manual

public
FDialogForm: TformDialog;

end;

implementation
{$R *.dfm}

uses
SysUtils;

procedure TformMain.butnOkClick(Sender: TObject);
var

s: string;
begin

s := Trim(editText.Text);
editText.Text := '';
if s = '' then begin

WebApplication.ShowMessage('Please enter some text.');
end else begin

with FDialogForm do begin
IWMemo1.Lines.Add(s);
Inc(FCount);
Show;

end;
end;

end;

procedure TformMain.IWAppFormCreate(Sender: TObject);
begin

FDialogForm := TformDialog.Create(WebApplication);
end;

procedure TformMain.IWLink1Click(Sender: TObject);
begin

WebApplication.Terminate('Good bye!');
end;

end.

IWLink1 OnClick
This event is hooked to the link with the caption “Quit” and simply terminates the user
session when the user clicks the link.

OnCreate
The OnCreate event is called when the form is created. In this event another form is
created and the reference to it is stored as a member variable of  this form so it can be
accessed again later.

Page 21 of 54



IntraWeb Manual

butnOk OnClick
In the OnClick event the edit box is checked for data. If no data exists
WebApplication.ShowMessage is called to display a message to the user. After the
message is dismissed the main form is shown again.

If the user did enter data, using FDialogForm (which was created in this form's OnCreate)
is used. Data is added to the memo, and a member variable of TFormDialog is updated. It
is then displayed using the .Show method. As you can see, data is very easy to pass
between forms and is the same as in a normal Delphi application.

Complete Demo
To see the project in action, please see the FormData.dpr project in the Demos directory.

Page 22 of 54



tate 
Management



IntraWeb Manual

Inherent State
Standard web development tools have automatic session management, but just means that
it tracks session info for you. You still have to deal with the state info between pages, or
proxy information in and out of a state object. The state objects are also usually limited to
strings and data must be marshaled in and out of strings, which is not feasible for
complex data types.

IntraWeb has something better, and that is inherent state management. What the heck is
that you say? Some new buzzword? No. Ask yourself this, How do you manage state in a
normal Delphi application? What? You do not have to? EXACTLY! That is how you
manage state in IntraWeb.

Restrictions

Global Variables
Global variables in general should not be used. If you want to use a global variable that is
“global” yet specific to each user session you need use variables that are tied to the user
session as described later.

If however you want a variable that is global among all user sessions you can and should
in fact use a global variable. However as IntraWeb is a threaded environment you must
take the proper steps to protect the variable from concurrent access.

ThreadVars
ThreadVars should never be used in an IntraWeb application except as temporary storage
under controlled circumstances. IntraWeb is based on HTTP which is stateless. This
essentially means that threads are not assigned to a specific user and a user is moved
between threads between HTTP requests.

Safe Storage

Form / Datamodule Members
Since IntraWeb forms and datamodules are persistent just like in a normal Delphi
application you can store information as member variables and properties. Such members
should be used when the form itself needs to store data about its instance or to receive
input from another form.

Page 24 of 54



IntraWeb Manual

User Session
The user session (covered more in detail in the Session Management section of this
manual) contains a .Data property that can hold a reference to an object. When you need
to store user specific information you can store it in the .Data property of the session.
Data accepts a TObject instance and will destroy the TObject automatically when the
session is destroyed. The easiest way is to create an object and add the fields that you
wish, and then create your object and store it in the session's Data property when the
session is created. The Phonetics demo shows an extended example of this.

When a new IntraWeb project is created a shell user session object is created for you in
the ServerController. The default ServerController looks like this:

unit ServerController;
{PUBDIST}

interface

uses
SysUtils, Classes, IWServerControllerBase,
IWApplication, IWAppForm;

type
TIWServerController = class(TIWServerControllerBase)

procedure IWServerControllerBaseNewSession(ASession:
TIWApplication;

var VMainForm: TIWAppForm);
private
public
end;

TUserSession = class
public
end;

// Procs
function UserSession: TUserSession;

implementation
{$R *.dfm}

uses
IWInit;

function UserSession: TUserSession;
begin

Result := TUserSession(RWebApplication.Data);
end;

procedure
TIWServerController.IWServerControllerBaseNewSession(

ASession: TIWApplication; var VMainForm: TIWAppForm);
begin

Page 25 of 54



IntraWeb Manual

ASession.Data := TUserSession.Create;
end;

end.

TUserSession is an empty session object that you can add members, properties and
methods to. The code to create the TUserSession for each session is also created in the
OnNewSession Event.

A function named UserSession also exists for easy access to the object. So if you changed
the TUserSession declaration to the following:

TUserSession = class
public

Username: string;
Password: string;

end;

You could access these properties elsewhere in your code simply as shown here:

UserSession.Username := 'Joe';
LPassword := UserSession.Password;

If you do not need a user session you may choose to eliminate it from the code. It is not
necessary and is part of the default template simply as a convenience.

The class type of TUserSession can be of any type. For projects that are generated with a
datamodule the TUserSession is a descendant of TComponent and not TObject as shown
here. TComponent allows the session to own components such as the datamodule and
allows for easier cleanup.

Complex State and the Back Button
Many people quickly discover that when building an IntraWeb application the back
button in the browser does not work. By default IntraWeb disables the back button and
pressing it has no effect. Please note first that this only applies to application mode. In
page mode the back button is fully functional. This limitation is because of the way that
IntraWeb allows and uses complex state.

Scenario – Normal Application
Imagine a normal application designed to run on the users local computer. It has five
different forms, and for some of the forms multiple instances of that form may be created
with different data (such as a properties dialog displaying properties about different
objects). Imagine now that at any time, without warning or notice to you the programmer,
the user can go to any form in the application. But not only can they go to just any form,
they can go to any form, in any prior state, even to versions of the forms which have since

Page 26 of 54



IntraWeb Manual

been removed from memory. After they move to that form, they can even interact with it.
How could such an application deal with this? 

Here are a few, but certainly not all of the problems:

� Forms may rely on data in databases that no longer exists because the user deleted it. 

� Forms may rely on data that has since changed, and the user would be posting old and
invalid data.

� Objects that were in memory have changed, or no longer exist.

Back Buttons in non IntraWeb Systems
System not built in IntraWeb usually support back buttons. However it is because they
fall into one of these categories:

���� Stateless – They are completely stateless and reconstruct state between each page.
This is usually very inefficient on the server side for weblications and puts
considerably extra load on databases because data is read and written unnecessarily.

���� State Streaming – These types stream the state into and out of each web page. This
consumes bandwidth and slows down page accesses. They also cannot use complex
data, or usage of complex data causes the same problems described prior.

Even applications that support the back button, such problems are still encountered.
However because they allow old data to be posted they must check the data to see if the
requested operations can be performed. This adds significantly to the amount of user code
except in the simplest of systems. Such systems are typically not weblications, but
individual dynamic pages. 

IntraWeb is Not Alone
If you try many online banking applications or ordering systems, many of them have the
same restrictions, but do not behave as well. Most of them allow you to go back, but will
tell you that you have requested expired content. That is certainly very user unfriendly
and confusing to non technical people.

Back Button for Historical Purposes
Under limited circumstances the back button can be supported in application mode. It can
be enabled for historical purposes. This means that the back button will be enabled, and
the user can move backward. However if they try to interact with data on a page that they

Page 27 of 54



IntraWeb Manual

have reached using the back button they will fail. If the user tries to interact with such a
page, a warning will be displayed:

You have attempted to post or refresh data from a page that
depends on information that is no longer available to the
server application.

Your attempted changes will be ignored. You will now be
resynchronized to the current place in the application.

After this warning is shown, the user will be shown the current form as it was before they
used the back button.

This functionality can be turned on by setting the .HistoryEnabled property to true in the
server controller.

This warning dialog can also be turned off. To do so set the .ShowResyncWarning
property to false in the server controller. If false, instead of seeing the warning dialog the
user will simply be resynchronized with the current form.

Page 28 of 54



ession 
Management



IntraWeb Manual

WebApplication Object
TIWApplication is to an IntraWeb application, what TApplication is to a standard Delphi
application. Like the latter, TIWApplication is not a visual component. It does not appear
on the property panel and therefore does not have published properties. However, it has a
number of public properties and methods that can be accessed via code in the IW
application. For each user session, a TIWApplication object is created. It represents the
user’s “application” or session.

Session Lifetime
A users session is automatically managed by IntraWeb. When a new session is started
IntraWeb will create a new instance of a TIWApplication for the user and track it
automatically. It can then be used to acquire information about the user, control the users
session, or store additional information. No management on the developers part is
required to implement session management, or to track the user.

A session exists until it is manually terminated by calling one of TIWApplication's
terminate methods, or a timeout occurs. If a user does not access the application within a
given time period, the user's session will be destroyed. The default timeout period is 10
minutes, but can be adjusted by changing the SessionTimeout property in the applications
ServerController.

Session Implementation
Sessions are managed automatically by IntraWeb. Sessions are stored in memory on the
server and there fore are secure from users who may attempt to modify the session data.

Each session is assigned a unique session ID that is used to identify the session. The
session ID is constructed in a secure manner so that session IDs are not predictable and
thus prone to hacking. In addition each session is tied to the users browser and if another
browser is detected attempting to use the same session an error will be returned. 

For further security the ServerController's RestrictIPs property. This will check the user's
IP address against the session and return an error if the IP address changes. This option is
false by default and should only be set to true in Intranets or Extranets with controlled
clients. This is because some proxy servers such as Microsofts ISA proxy server change
IP addresses between HTTP requests for a given user and will cause multiple IP addresses
to be seen by the IntraWeb server.

By default the session ID is embedded in each HTML page and tracked with each HTTP
request. This allows a single user to have multiple sessions per application. The
disadvantage is that once the user is inside the application they cannot leave the

Page 30 of 54



IntraWeb Manual

application and return to it. Because of this when using this method of session ID tracking
any non application web pages must be opened in new windows unless it is in response to
the application terminating.

Session tracking can be set to use cookies instead of embedding in the HTML page by
setting the ServerController's SessionTrackingMethod property to tmCookie. This will
instruct IntraWeb to use cookies to track the user's session instead. The advantage is that
the user can move in and out of the application to other web pages with ease. The
disadvantage is that many users disable cookies and also that the user can only have one
session per application.

Accessing the Session
The users application can be accessed in several ways.

WebApplication Property of the Form
In any event or method of your forms you can simply use WebApplication which will
reference the form's WebApplication property. This will meet the requirements in nearly
all cases. However some notable exceptions where this property is not accessible are
global procedures, TFrames, datamodules, and non IntraWeb classes.

WebApplication Property of a Control
The base IntraWeb control also contains a WebApplication property that can be used
when writing custom controls.

RWebApplication
RWebApplication is a special global variable that can be used to access the current users
session when a form or a control reference is not available. This is useful in datamodules,
TFrame's, global procedures, and non IntraWeb classes. RWebApplication is a ThreadVar
and therefore no special precautions need be taken by the developer to access it. To
reference RWebApplication you will need to add IWInit to your uses clause.

Storing Additional Data
Additional data can be stored in the .Data property and is covered in the State
Management section of this manual.

Page 31 of 54



IntraWeb Manual

Session Related Events
The server controller has events related to session management that are fired for session
creation and destruction.

OnNewSession
OnNewSession is fired each time a new user session is created. It passes in two
arguments, ASession and VMainForm.

ASession is a reference to the newly created session and can be used to query information
about the user or modified with custom information such as creating an object to be
stored in the .Data property.

VMainForm is passed as a var parameter. It is initialized to nil and if not set the default
main form as specified in the project file (dpr) will be used. VMainForm however can be
modified based on parameters passed on the start URL, or based on other criteria to
specify a main form for the user. To specify an alternate main form simply create it and
return its instance in the VMainForm argument.

OnCloseSession
OnCloseSession is called when a users session is about to be terminated. This occurs
either when one of the forms of WebApplication.Terminate is called, or the session has
timed out.

Memory Consumption
The base memory consumption per session is quite low and in most cases is not a major
consideration. The actual size can vary from session to session, but the base memory
consumption excluding any user data in the .Data property should typically be at
maximum 1024 bytes. 

Reference
More information on the methods and properties of the TIWApplication is available in
the IntraWeb help file.

Page 32 of 54



Debugging



IntraWeb Manual

Debugging
When using standalone mode debugging is the same as any other Delphi application. Just
set your break points, watches, etc and run.

Debug Output
While running in stand alone mode you can turn on debug output to see sessions created,
destroyed, and HTTP requests.  You can turn on debug output you can select “Show
Debug Information” from the file menu, or depress the tool bar button that has an icon of
the spectacles.

This is a screenshot with the debug tool bar button depressed, and debug output
information from one user session:

Detecting Errors on Startup
If errors occur during start up of an application IntraWeb will terminate the application
and log the error to an .err file. The applications filename with an .err extension will be
used. If you are having trouble starting an application, check for an associated .err file.
The .err file is a text file and can be viewed with notepad, or edln.

Errors that occur outside of the program block such as missing required packages or
statically linked DLLs cannot be detected and will not be logged in the .err file.

Page 34 of 54



ayout Managers
and Templates



IntraWeb Manual

Layout Managers

What is a Layout Manager
A layout manager assembles the HTML pieces from each component into a complete
HTML page for output to the browser. IntraWeb has a base layout manager,
TIWLayoutMgr that can be descended from to create new layout managers. Currently
IntraWeb has two layout managers TIWLayoutMgrForm and
TIWTemplateProcessorHTML. In the future, there will be other layout managers to
support XML and more.

Form Layout Manager – TIWLayoutMgrForm
This is the default layout manager. If no layout manager is specified, and implicit
TIWLayoutMgrForm will be created and used. TIWLayoutMgrForm creates HTML
pages that have the same layout and look as the designed form.

HTML Templates
Templates allow for advanced formatting and layout of individual forms. Templates also
allow a web designer to design the layout of forms without using Delphi. In short,
templates allow presentation and implementation to be separated. Templates are simply
special HTML files.

The use of templates still requires the browser to support HTML 4 and JavaScript.

Any framed controls will be rendered without frames when templates are used. If you
wish to have them frames in the template, you should frame them by using IFrame or
other method in your template. 

To use templates create a ‘Templates’ sub directory in your application directory and
create a <FormName>.html file. Next, for the form that you wish to apply the template to:

1. Add a TIWTemplateProcessorHTML component from the IntraWeb Control tab
to your form.

2. Set the form’s TemplateProcessor to the new TIWTemplateProcessorHTML
component.

Most of the template functionality should be self-explanatory by looking at the examples.
To see templates in action see the Phonetics Customer Profiler demo.

Page 36 of 54



IntraWeb Manual

For each component, the template should contain a tag of the form
{%Component.HTMLName%}. HTMLName in most cases is the same as the name.
When the form is generated, the tags will be replaced with the component output. The use
of {%%} instead of <> allows for easier editing in WSIWYG HTML editors and is
compatible with all HTML editors. The {% %} tag characters are also not considered
special characters and therefore are not converted to special tags. By default, a master
FORM tag will surround the body to ensure proper function of all input controls and
buttons. However, in some cases this can interfere with the HTML. For such cases, see
the help topic for TIWTemplateProcessorHTML.MasterFormTag.

For components on a TFrame, HTMLName differs from Name. Because a TFrame is the
owner of the components contained in it, components on a TFrame can have the same
name as components on other TFrame instances, or as components on the form. To
circumvent this components on a TFrame set their HTMLName to the frame name +
component name at run time. For instance, if a component named Label1 is on a TFrame
named Frame1, the components HTMLName at run time will be Frame1Label1.
{%Frame1Label1%} is the tag that need to use when using components on a frame in a
template.

If you wish to use the Borland style tags <#TagName#> instead of the IntraWeb style tags
you can set the TagType property to ttBorland. IntraWeb type tags are easier to use with
WSYWIG HTML editors.

System Templates
System templates can be used to modify the look and layout of system messages and
dialogs generated by IntraWeb.

System Dialogs
There are two specific template files called IWShowMessage.html and
IWException.html. These are used to provide additional formatting to ShowMessage
method and for the display of uncaught exceptions. The following tags must be present:

{%textMessage%} 

{%butnOk%} 

The Guess demo has these two templates implemented as an example.

Note that the template for ShowMessage has no effect when smAlert or smNewWindow
is passed to ShowMessage.

Page 37 of 54



IntraWeb Manual

System Messages
System Templates support two tags: {%Content%} and {%AppName%} which can be
used to display the error message. {%AppName%} is as specified in
ServerController.AppName. The tag {%AppID%}. IT refers to the application ID. 

IWError.html
System errors are errors that happen outside of your application and in the server portion
of IntraWeb. These errors are rare and usually consist of such things as the user entering
invalid requests via URLs or trying to access expired sessions. These errors can be
handled by creating a template named IWError.html. 

Page 38 of 54



riting Custom
Components



IntraWeb Manual

Writing Custom Components

Under Construction
This chapter is still under construction and will be expanded in the future. Please feel free
to use our newsgroups to ask any questions related to writing custom components.

Preface
All IntraWeb components are written using an open API that easily allows you to write
your own components and add them to IntraWeb just as you can with Delphi. To further
facilitate the writing of components the source code for all IntraWeb components in
included, even in the evaluation edition of IntraWeb.

Third Parties
If you are creating components for distribution, either free of charge or for a fee, you
should consider joining the IntraWeb Third Party program. Information about this
program is available on the IntraWeb website. The IntraWeb Third Party program can
help you with the development of your components, as well as the distribution and
promotion of your components.

Source Code
Source code is included for most of IntraWeb’s components. The source code can be
found in the source subdirectory of the IntraWeb directory. The API is very Delphi like
and for most people quite explanatory.

Core Server
In each IntraWeb application there is a core server which is responsible for serving the
actual HTTP requests. This server is of based type TIWServer and is accessible by using
the global GIWServer variable in the IWServer unit. The core server has methods that are
of use to component writers, and is documented in the help file as TIWServer.

Page 40 of 54



Deployment



IntraWeb Manual

Deployment of IntraWeb Applications
IntraWeb applications can be deployed as a Windows service / Linux daemon, a
standalone executable, an ISAPI application, or an Apache DSO. Using page mode
IntraWeb applications can be deployed by other methods as well.

Stand Alone Mode
While writing your application in Delphi, you will probably use the standalone mode to
debug your application. When run as an application, a debugging screen appears with
basic statistics. This screen also contains an Execute (Run | Execute or F9) option, which
can be used to test execute the application in the browser. By clicking on it, the default
browser will be launched with the corresponding URL to test the application.

Command Line Parameters

Auto Browser Launch
To further expedite development you can add “/LaunchBrowser” to the application
parameters to have the program launch the browser automatically each time it is run. To
do this in Delphi, select the Parameters menu item from the Run menu. Then enter
“/LaunchBrowser” in the Parameters field. The next time you execute your application
the browser will automatically be launched.

Auto Minimize
The debug screen can be told to start minimized by passing /minimize on the command
line.

No Service
The same executable is used for a standalone executable and as a Windows service. To
facilitate this functionality the executable queries Windows about its status as a service.
This can cause problems if the executable is not run from an administrative account. To
disable this querying /noservice can be passed on the command line to instruct the
executable to run as a normal executable and not try to run as a service.

Service Mode
Running IntraWeb applications as a service has its benefits and disadvantages. The
disadvantages are that there is no debug screen or execute menu item. The main

Page 42 of 54



IntraWeb Manual

advantage is that the there is no requirement for logging on to the machine in order to run
the application (like any other Windows service). A few steps have to be taken prior to
running the application as a service. In particular, it has to be installed as such. To do so,
using the windows command prompt, change to the directory where the application
resides and type:

Application_name –install

This will install it and the application will appear in the Services Applet. From there, it
can be configured to run automatically or manually. There is no need to activate the
“Interact with Desktop” under the properties of the service, and doing so will have no
effect whatsoever. 

In a similar way, if the need arises to uninstall the application, it can be done by typing:

Application_name –uninstall

Before executing this command, be sure to stop your service.

Notes:

1) Only Windows NT, Windows 2000, and Windows XP support services.
Windows 95, Windows 98 and Windows ME do not support services.

2) Services do not function in evaluation mode. Attempts to do so will result in
errors.

ISAPI / NSAPI / Apache DSO / CGI / Win-CGI
IntraWeb applications developed using page mode can be deployed as ISAPI, Apache
DSO, NSAPI, CGI, or Win-CGI. 

Application mode executables may only be deployed as ISAPI, NSAPI or Apache DSO. 

Launch URLs

Linking to IntraWeb Applications
Since the whole user interface is based on a web browser, calling the application is done
using a URL. The URL has a very simple format.

Stand Alone Usage
Syntax: http://<server>:<port>

Page 43 of 54



IntraWeb Manual

Example: http://www.atozedsoftware.com:4000

ISAPI Usage
Syntax: http://<server>/<script path>/<dll>

Example: http://www.atozedsoftware.com/iw/guess.dll

Apache DSO Usage
Syntax: http://<server>/<location>

Example: http://www.atozedsoftware.com/myapp

Launch URL Option
URL's are formed by specifying the host and adding the port number (if different to the
default 80). You can optionally specify a start text on the URL by setting the StartCmd
property in the ServerController and then adding the value of the URL For example:
http://www.atozedsoftware.com:4000/launch 

Sessions
Every time this URL is entered into the browser and new session is created and the user is
tracked automatically throughout the whole period that the session lasts. Optionally,
parameters can also be specified when calling a new instance by passing them using
POST or GET.

Passing Parameters
Parameters are passed to the application using the interrogation (?) sign after the start
URL. Each parameter consists of a “parameter name” and “parameter value”. Parameters
are separated from each other using the ampersand (&) sign. The following examples
show how to pass two parameters named “param1” and “param2” with values “value1”
and “value” respectively:

http://www.atozedsoftware.com:4000?param1=value1&param2=value2 (Stand Alone)

These parameters are available in your application by accessing the RunParams property
of the TIWApplication object.

Page 44 of 54



IntraWeb Manual

In addition, prelaunch changes can be performed in the ServerController.OnNewSession
event. One such use may be to read the parameters that have been passed in an offer
different users different starting forms.

Page 45 of 54



erformance
Evaluation



IntraWeb Manual

Performance Evaluation
You will likely want to test the performance of your application. Many users test the
performance improperly and thus receive misleading results. When testing be aware of
the following items that can negatively impact your tests.

1. When using Internet Explorer, the first page will render quickly. However, when
you click on a button or a link from the first page, Internet Explorer will then
load extra libraries and cause a delay. This delay is caused by Internet Explorer
and not the IntraWeb application. As you move to successive pages, you will
notice that this delay no longer exists.

2. When using a browser on the same machine as the server the network is forced to
use the “loopback” address. The loop-back address generally provides good
performance however sometimes will introduce delays into the transfer of data.

3. When using a browser on the same machine as the server, the browser, network
and application all compete for CPU, disk and memory at the same time. Most
browsers are quite CPU and memory intensive, and thus negatively impact the
server and your results.

4. When using Netscape and running your application from Delphi, the Delphi
debugger hooks and Netscape conflict. Often you will have to task switch from
the browser to the application to “unstick” the local network.

5. Anytime you run your server from within Delphi, Delphi’s debugger is active.
The debugger not only consumes memory and CPU, but can also slow down the
execution of your application. Under normal circumstances, this is perfectly
acceptable, however keep this in mind if you are testing performance.

6. The first time you execute an ISAPI based application the web server must load
the DLL and this will cause for a delay.

To properly test performance, you should run your application and browser on separate
machines.

Page 47 of 54



caling IntraWeb
Applications



IntraWeb Manual

Scaling IntraWeb Applications
What if my application grows too big for one server to handle? Can IntraWeb scale? Sure
it can.

IntraWeb can be scaled using a variety of methods. First also consider that in many
applications you can handle more with less CPU because App mode is stateful. Without
state, applications often spend a lot of CPU streaming state to a DB, reconstructing state,
or needlessly rerunning queries against a database. That being said, there are still times
you need to scale.

Add Another Tier
Use MTS, COM, SOAP, ASTA, Midas, whatever and split that piece into multiple
machines. This will take processing out of the IntraWeb application and allow it to be
distributed.

Beef Up You Database Server
Add more CPU power or memory to the database server. In many systems, the database is
the bottleneck, and the web application spends the majority of its time waiting on the
database.

Add More Memory to Application Server
Check your memory usage and make sure that your application server has the appropriate
amount of memory. Virtual memory will be used if not enough physical memory is
available, but this will slow down the response time and consume CPU cycles.
Eliminating the use of virtual memory will increase efficiency and capacity.

Use a Multi-Processor Server
IntraWeb servers are fully threaded. Thus, IntraWeb servers will take advantage of
multiple processors if present.

Distribute the IntraWeb Application Itself
If you have reached a level requiring you to scale the actual IntraWeb application, this can
be accomplished as well. What will be presented here is not the only way that an
IntraWeb application can be distributed, but it is the most common. It is very simple, and
effective. This method can also be used in conjunction with the previously described
methods.

Page 49 of 54



IntraWeb Manual

Step 1 – Install Multiple Application Servers
Each server will need it’s own IP address. For this example, we will simply refer to them
as .1, .2 and .3.

Step 2 – Create a New DNS Record
Create a new DNS entry to identify the application. For this example, we will use
iwapp.atozedsoftware.com.

Step 3 – Add Multiple IPs for the DNS Record
DNS allows multiple IPs to be assigned to a given record. In our example, we would
assign .1, .2, .3 to iwapp.atozedsoftware.com. When multiple IPs are assigned to a single
record, the DNS server will perform rotating DNS, sometimes also referred to as round
robin. This means that the first request for iwapp.atozedsoftware.com will return .1, the
second will return .2, the third will return .3, the fourth will return .1, and so on.

This will distribute the load across the servers. This method does not perform true load
balancing, as it does not measure the load, it just distributes it. In most applications, the
law of averages applies and it is quite effective. If your application is such that it creates
large imbalances, you will need to use a load balancing DNS server instead.

Step 4 – Create a Redirect Entry
On each application server create a redirect entry using the primary web server’s
configuration, or a page that performs a redirect to that servers actual IP. When the page
or virtual entry is requested, the browser will not know that it has been redirected to an IP
by the DNS server, as this is part of its normal operation. However, we must make sure
that subsequent requests are routed to the same application server, as IntraWeb is stateful.
Note that this only applies to Application Mode, and not Page mode. This step can be
skipped for Page Mode.

The virtual entry or web page merely redirects the web browser to a URL containing its
individual IP instead of iwapp.atozedsoftware.com. For example if our URL is
http://iwapp.atozedsoftware.com, this entry might redirect the browser to
http://x.x.x.1:6000/start. This URL demonstrates a stand alone IntraWeb application, but
it can be adjusted to redirect to a static page, an ISAPI version, or a DSO version. The
important thing is that the browser is redirected to the physical application server so each
subsequent request will return to that server.

Page 50 of 54



ecure
HTTP / SSL



IntraWeb Manual

SSL – Secure HTTP
If your application is deployed as an ISAPI DLL or an Apache DSO, you need to use the
hosting web server’s SSL capabilities since it handles the HTTP protocol.

In Stand Alone mode, SSL is supported also. The first step is that you must obtain SSL
certificates.

Enabling SSL
IntraWeb requires that your certificates are .pem format. To enable SSL support, follow
these steps:

1. Download and install the SSL DLLs. Information on how to obtain the DLLs is
available at http://www.nevrona.com/indy/ssl.html. The DLLs are free.

2. Set the SSLPort in the ServerController to a value other than 0. The default for
SSL support is 443. If you are running a standard web server on the same
machine and it supports SSL, it will already be using 443 and you will need to
use another port.

3. Set the SSLCertificatePassword in the ServerController if you assigned a
password to your certificates.

4. Place your certificates in the same directory as the application. The certificates
must be named:

a. Cert.pem

b. Root.pem

c. Key.pem

Converting Certificates to PEM Format
Chances are that your certificates were not delivered to you in .pem format. If they are not
in .pem you must convert them for use with IntraWeb.

This procedure assumes that you have already received your key and certificate pair from
some Certificate Authority (like Verisign or Thawte) and that you have them installed in
Microsoft Internet Explorer in Personal Certificates Store.

Page 52 of 54



IntraWeb Manual

Export Certificate
Select the certificate and export it as a .pfx file (Personal Exchange Format). You may
optionally protect it with a password. 

Convert .pfx to .pem
As part of the SSL download, a utility named openssl.exe was included. This utility will
be used to convert your .pfx file.

To use openssl.exe, use the following format:

openssl.exe pkcs12 –in <your file>.pfx –out <your file>.pem

Openssl.exe will prompt you for a password. Enter it if you used one, or leave it blank if
you did not specify one. It will also prompt you for a new password for the .pem file. This
is optional, but if you protect it with a password be sure to fill in the
ServerController.SSLCertificatePassword property in your application.

Splitting the .pem File
If you examine the new .pem file with a notepad, you will notice that it consists of two
parts. The two parts consist of the private key and the certificate (public key) part. There
is also some addition information included. IntraWeb requires that this information be
separated into separate files.

Key.pem
Create key.pem with notepad and paste everything between and including these two
statements:

-----BEGIN RSA PRIVATE KEY-----

-----END RSA PRIVATE KEY-----

Cert.pem

Create cert.pem with notepad and paste everything between and including these two
statements:

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Root.pem

Page 53 of 54



IntraWeb Manual

The final file that IntraWeb requires is the Certificate Authority certificate file. You can
obtain this from the Internet Explorer in Trusted Root Certificate Authority dialog. Select
the Authority that issued your certificate and export it in Base64 (cer) format. This format
is also the same as PEM format so after export simply rename the file to root.pem.

Page 54 of 54


